Antitrust & Competition Policy Blog

Editor: D. Daniel Sokol
University of Florida
Levin College of Law

Friday, January 11, 2019

Information and Market Power

Dirk Bergemann, Yale University - Cowles Foundation - Department of Economics; Yale University - Cowles Foundation, Tibor Heumann, HEC Montreal, and Stephen Morris, Princeton University - Department of Economics explain Information and Market Power.

ABSTRACT: We consider demand function competition with a finite number of agents and private information. We analyze how the structure of the private information shapes the market power of each agent and the price volatility. We show that any degree of market power can arise in the unique equilibrium under an information structure that is arbitrarily close to complete information. In particular, regardless of the number of agents and the correlation of payoff shocks, market power may be arbitrarily close to zero (so we obtain the competitive outcome) or arbitrarily large (so there is no trade in equilibrium). By contrast, price volatility is always less than the variance of the aggregate shock across agents across all information structures, hence we can provide sharp and robust bounds on some but not all equilibrium statistics.

We then compare demand function competition with a different uniform price trading mechanism, namely Cournot competition. Interestingly, in Cournot competition, the market power is uniquely determined while the price volatility cannot be bounded by the variance of the aggregate shock.

| Permalink


Post a comment