Tuesday, July 25, 2006

Lithium buckyballs provide nano storage of hydrogen

 

Researchers have identified, in theory, a new storage system to hold large quantities of hydrogen fuel, which could power cars in a more cost-effective, consumer-friendly, and environmentally sound way.  The new system is described in the Bulletin of the American Chemical Society to be published August 6th (published online July 6).

 

A lithium-coated fullerene, also known as a C60 cluster, as a potential material for hydrogen storage. Yellow represents lithium atoms, and black represents carbon atoms. (Photo courtesy of Qiang Sun, Ph.D., and Puru Jena, Ph.D. / VCU)
 

Science Daily posted this from Virginia Commonwealth University's press release:  SD post

This theoretical research moves scientists another step closer in the exploration of alternative fuel sources and methods to store hydrogen fuel.

"We are going to face an energy crisis at some point in the future. It's not a question of if, but when. There is a high demand on oil, particularly due to a growing global population," said lead author Puru Jena, Ph.D., a professor of physics at VCU.

"We need an energy source that is abundant, cost effective and renewable, burns clean and does not pollute," he said. "Today, approximately 75 percent of the oil currently available is used for transportation alone. Any solution to the energy crisis has to take into account the amount of energy we spend on transportation."

Hydrogen is the most abundant element in the universe and considered an ideal energy carrier. When hydrogen burns, it produces only water and thus, does not pollute the atmosphere. For this reason, it is considered an ideal alternative when discussing theoretical alternatives to fossil fuels.

... Jena and his team describe the theoretical composition of a material -- a lithium-coated buckyball -- that may have the potential to serve as a storage vessel for hydrogen atoms. A buckyball is a soccer ball-shaped nanoparticle containing 60 carbon atoms. Essentially, the lithium buckyballs absorb the hydrogen, which means that one lithium atom can store five hydrogen molecules. According to Jena, the theoretical buckyball, which was designed using computer modeling, has 12 lithium atoms and can store 60 hydrogen molecules.

"The biggest hurdle in a hydrogen economy is to find materials to store hydrogen," Jena said. "The storage materials in question need to have the ability to store hydrogen and allow us to take it out, which means the system must be reversible and operate under moderate temperatures and pressures."

Theoretical and experimental work by other researchers has proposed using titanium-coated buckyballs for hydrogen storage. However, those researchers observed that the titanium atoms had a tendency to react with each other and form clusters on the surface of the buckyball. Once clustering takes place, the properties of the buckyball are no longer effective for storing hydrogen in large quantities.

Industry standards require materials that store hydrogen to have a high gravimetric density of 9 weight percent, and high volumetric density of 70 grams/liter.

"The material that we have designed is capable of storing hydrogen at a gravimetric density of 13 weight percent -- so it exceeds the industry target. Also, the volumetric density is approximately twice that of liquid hydrogen. This theoretical work has promise, provided one can make it in large enough quantities," said Jena.

....Jena is currently collaborating with scientists who will conduct experiments to prove that hydrogen can be stored in the lithium buckyballs. Furthermore, these investigators will determine the necessary temperature and pressure conditions for storage and removal of hydrogen from the lithium buckyballs, and how to produce these materials in large quantities.

http://lawprofessors.typepad.com/environmental_law/2006/07/lithium_buckyba.html

Economics, Energy | Permalink

TrackBack URL for this entry:

http://www.typepad.com/services/trackback/6a00d8341bfae553ef00d83530c47553ef

Listed below are links to weblogs that reference Lithium buckyballs provide nano storage of hydrogen: